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LETTER TO THE EDITOR 

Transport in a superlattice of ID ballistic channels 
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D C Peacock?, J E F Frost?, D A Ritchiet, G A C Jones? and G Hill$ 
t Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 
i Department of Electrical Engineering, The University of Sheffield, Mappin Street, 
Sheffield S10 2TN, UK 

Received 6 November 1989, in final form 7 February 1990 

Abstract. We have fabricated a m  array O f  1D narrow channelsinasquarelatticeconfiguration 
on a high mobility GaAs/GaAlAs heterostructure. When a gate voltage is applied the 
underlying two-dimensional electron gas is depleted creating 4000 dots, of size 0.2 ,um, 
leaving a grid-like conducting path of quasi one-dimensional channels that are linked every 
0.5 pm. For low values of magnetic field the Hall voltage measured on either side of the 
device is quenched across its entire width of 25 pm. The longitudinal magneto-resistance 
reveals Aharonov-Bohmoscillations with a flux period of h/e for magnetic fields up to0.4 T. 
The conductance versus gate voltage shows structure that is consistent with Bragg reflections 
of the electron waves when the one-dimensional subband wavelength at the Fermi energy, 
in the direction of current flow, is equal to one superlattice period. Dips in the conductance 
when this criteria is met show a In T temperature dependence, similar in origin to a ZD 
quantum interference. A magnetic field quenches these dips when the cyclotron orbit is 
comparable with the superlattice period. 

We have investigated a device that applies a superlattice potential to a two-dimensional 
electron gas (2DEG) via apatterned gate consisting of squares of side 0.2 ym with a centre 
to centre separation of 0.5 ym. The 2DEG is created at the interface of a GaAs/GaAlAs 
heterostructure which is 70 nm below the patterned gate. When a negative gate voltage is 
applied the carriers are depleted under the square dots resulting in agrid-like conducting 
structure of 0.5 pm long ID ballistic channels connected both in parallel and series. The 
unit cell of such a device is a combination of two structures already realised; in one 
direction it resembles the two ballistic ID channels in series investigated by Wharam et 
a1 [l], and in the other it resembles the two ballistic ID channels in parallel measured by 
Smith et a1 [2]. 

The device was fabricated in the manner developed by Ford et a1 [3] using electron 
beam lithography to pattern a polymethylmethacrylate layer 100 nm thick as a dielectric 
on the surface of the heterostructure, over which Au was evaporated from three different 
directions at an angle of 45 degrees to a thickness of 200 nm. The pattern of 4000 repeated 
squares was defined on a 25 ym wide Hall bar over a length of 40 ym. The superlattice 
region was connected to the wide ZD region at each end via a 5 pm long and 5 pm wide 
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Figure 1. ( a )  The shape of the gate pattern on the Hall bar is shown and the position of the 
various contacts is marked. (b)  A close up of the shaded area in (a) of the superlattice showing 
the shape of the gates and the effect of depletion. A unit cell is marked. 

Table 1. The device parameters for the two samples. 

Period, a Mobility, Carrier concentration, 
Device (nm) p (cm v-l s-I) a Comments 

No 1 0.5 8.3 x 105 3.2 x 10" No Hall probes. Larger dot 

No 2 0.5 1.21 x lo6 3.2 X 10" Hall probes. Smaller dot size 

size 

opening in the gate metallisation. Two Hall probes 4 pm wide were in contact with each 
side of the superlattice region (figure 1). 

The two devices studied had nominally the same shape, but were fabricated on 
differing substrates with the same underlying layer structure which was as follows: a 
superlattice buffer [(AlAs 2.4 nm, GaAs 2.5 nm) X 251 was grown first on a semi- 
insulating substrate, followed by 1 pm of nominally undoped GaAs. On top of this, 
20nm of undoped AlGaAs was grown, followed by 40nm of AlGaAs (Si doped at 
10l8 ~ m - ~ )  and topped by a 10 nm undoped GaAs capping layer. The resulting charac- 
teristics are shown in table 1. 

All the measurements in this paper were performed in a dilution refrigerator over a 
temperature range, 30-500mK. The sample was operated in the regime where the 
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Figure2. AplotoftheHallvoltageinsample2measuredoffcontactsD andG, with acurrent 
applied to contacts A and B. The Hall voltage is plotted for four different gate voltages. 

carriers have been depleted from underneath the gated squares. We do not consider the 
case of low negative gate voltages, which was recently investigated in a similar structure 
by Alves et a1 [4], but instead we have studied the large negative gate voltage case when 
the current flows around the superlattice of dots. Changing the gate voltage in this regime 
changes the depletion width around each dot simuitaneously. This provides a weak ID 
periodic potential of period 0.5 pm in the direction of the current flow, as the periodic 
change in channel width causes a periodic change in the energy of the I D  subbands 
confined between the dots. The quasi-iD nature of this device should enhance the 
amplitude of any superlattice effects [ 5 ] .  Our reasons for describing the channels as 
weakly coupled will be discussed. 

In figure 2 we show Hall voltage measurements, while in figure 3(a) we show the 
variation in conductance of sample 2, measured in two different orientations, as the gate 
voltage was changed. Figure 3(a) is for voltages measured between contacts C and E 
when the current was applied to contacts A and B. The structure which can clearly be 
seen in these curves will be discussed shortly. First we will show how the Hall voltage 
measurements of figure 2 support our claim that this sample closely resembles weakly 
coupled ID channels. In this figure the Hall voltage is plotted against the magnetic field 
for four different gate voltages and as can be seen, as well as the carrier concentration 
dropping with gate voltage there is a low field quench of the Hall voltage across the 
25 pm wide Hall bar. The carriers are depleted under the 0.2 pm wide squares when 
Vg = -0.55 V, but the Hall voltage is quenched for a gate voltage range from Vg = - 1 V 
to pinch off at -1.32 V. Such quenches in the Hall voltage have been seen before in 
single narrow ID channels with small closely spaced Hall probes [6,7]. The existence of 
this quench implies that at fields below 0.15 T the electrons are preferentially focused 
from the exit of the ID channel defined by one pair of dots into the channel defined by 
the next pair. This follows the most recent theoretical explanation for the quenching of 
the Hall effect which is given in [&I, where the idea of electron collimation from the horn 
like entrances and exits from the ID channels is proposed. Other workers have explained 
the quenching in quantum mechanical terms [9] without invoking collimation effects. 
The two-terminal magneto-resistance measured through contacts D and G is displayed 
in figure 4. The zero-field peak results from localisation in the contacts and is the same 
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Figure 3. A graph of conductance against gate voltage for sample 2. Curve (a) is a four- 
terminal measurement with currents in contacts A and B and voltage measured off contacts 
C and E. The top arrows mark the gate voltage for which equation (4) is valid for N = 1, 2 
and N = 3. The bottom arrows mark the gate voltage for which equation (7) is valid for n = 
1 and 2 and for p = 1 , 2 ,  3 and 4. Curve ( b )  is a plot of the differential of curve ( a )  with 

arbitrary units in the vertical direction. The width MJ between the dots in this direction varies 
as w = (217 + 114V,)nm. 
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Figure 4. The full trace is a plot of the two-terminal magneto-resistance applied to contacts 
D and G for a gate voltage of - 1.3 V. The broken trace marks the Hall voltage for the same 
gate voltage measured off contacts D and G with current applied to contacts A and B. 

for Vg = 0, but the large peak that appears at fields just below those at which the quench 
disappears becomes larger as the gate voltage is made smaller. The small periodic 
oscillations superimposed on this background resistance have a period of 0.051 T. 
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Surprisingly for a large array of circles, as exists in this case, these oscillations appear to 
be Aharonov-Bohm oscillations occurring every time a flux of h/e  fits within a circle of 
diameter 0.32 pm. One would expect the h/e  oscillations to be averaged out as each 
oscillation associated with each ring will have a random phase compared to any other 
(the reversed path h/2e oscillations would normally be expected at low fields when 
the magnetic length (h/eB)'I2 is longer than the circumference, which in this case 
corresponds to  0.01 T). The oscillations we observe occur for fields from 0.08 T up to 
0.4 T when the current begins to be confined to edge states. Perhaps because all the dots 
are surrounded by a current rotating in edge states in the same direction around dots of 
the same circumference, with no impurity scattering to provide random phase variations 
between each dot, the oscillations appear in phase. 

At  high magnetic fields when the cyclotron orbit is smaller than the I D  channel 
widths, the Hall voltage is quantised as in a large 2DEG. (For channels 30 nm wide, B 
must be greater than 3 T.) The Hall effect for fields greater than 2-3 T was linear and 
can be used to deduce the carrier concentration variation with gate voltage. Only sample 
2 had working Hall probes allowing a measurement of the variation of n with Vg giving: 

n = (3.51 + 2.02Vg) X 1015 m-* (1) 
for -1.25V < V g  < -0.25V. 

To investigate how the width, w ,  of the conducting channel between the depleted 
dots changes with gate voltage we use the fact that when the 2DEG is just depleted under 
the dots the conducting width has the lithographically defined value of 0.3 ym minus 
twice the separation of the gates from the ZDEG ( 2  X 0.07 pm) [lo]. We also know that 
the device pinches off when the conductance goes to zero and the conductance versus 
gate voltage is close to linear, differing only near pinch-off. The variation of w with Vg 
is discussed in the figure captions for figure 3. The gate pattern of each dot resembles 
the single dot already studied for two ballistic channels in parallel patterned on the same 
material. The voltage at which the dots just deplete the ZDEG under them (-0.5 V) and 
the voltage at which the channels between the dots are pinched off are similar in both 
types of device. In the case of the single dot the variation of the depletion width with 
gate voltage was measured using the Aharonov-Bohm effect, and it was found to fit to 
within 10% with that calculated from using the simple method of estimating w we have 
used above. From equation (1) we also know the carrier concentration variation with 
gate voltage so the conductance is given by 

G = wnepP/L 

where P is the number of dots perpendicular to the current flow and L is the length of 
the superlattice. Experimentally the mobility y in a ZDEG is known to vary with n as [ll] 

n 3 ~ 2  ( 2 )  
for a large ~ D E G .  This enables us to calculate w for a given gate voltage. Interestingly the 
measured conductance is three times that calculated by assuming that if there are N ID 
subbands between each dot then the total conductance will be given by: 

G = ( W / L ) ( 2 e 2 / h ) N  ( 3 )  
where W = the width of the mesa, L = the length of the superlattice and N = w K f / n .  
Which is what would be expected for a grid-like resistor network with each resistor 
consisting of a quantised ballistic conductor of width w. Equation ( 3 )  is the value of G 
one would expect if each constriction between each pair of dots acted as an independent 
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resistor. In fact these results show that three resistors added together have the same 
resistance as one on its own, which is further evidence for the non-addition of resistors 
in the ballistic regime when the electrons pass through the resistors without scattering 
[ I ] .  The implication is that at Vg = - 1 V the electrons traverse three superlattice periods 
(1.5pm) before they are scattered, this corresponds to a mobility of y = 
250 000 cm2 V-' s-' . In a large ZDEG without the dots one would expect a reduction of 
the mobility to p = 300 000 cm2 V-' s- due to the variation in carrier concentration 
(from equation ( 2 ) ) ,  which is close to that deduced from assuming that the electrons 
traverse three superlattice periods without scattering. In other words the scattering in 
the superlattice is dominated by random impurities and the addition of the dots has not 
introduced any new mechanism. 

Due to misalignment during the exposure, the pattern of dots in both samples extends 
4 pm over the Hall probe on one side (see figure l), which means that the resistance 
through contacts D and G is 1.62 R,, where Ro is the average reistance per square of 
the lattice. Coincidentally this is the same as for the four-terminal resistance measured 
from the source to the drain. In addition the fact that the pinch-off voltages differ by 
50 mV for sample 2 when measured in the two orthogonal directions X and Y implies 
that, due to processing errors, the two orthogonal sides of the squares differ in length 
by 100 nm. 

Differentiation of curve (a) in figure 3 reveals a great deal of structure in the turn off 
characteristics (see curve (b )  in figure 3). The differentiation was carried out after 
numerically filtering the data with a high pass filter set at 40 V-'. This smooths the data 
and removes s0m-e of the structure due to noise. and leads to a broadening of the peaks 
by 25 mV. Such a value was chosen because it corresponds to the uncertainty in V ,  due 
to thermal broadening which is calculated from 

dw = ( ~ / 2 ) ( k , T / E f ) ' / ~ .  

We know how Ef and w vary with V, so we can calculate how the temperature relates to 
Vg giving 

dV, = 80T'I2 mV. 

At first it is tempting to assign this structure to the removal of one-dimensional subbands 
as the channel width is narrowed, particularly if each channel loses a subband at the 
same voltage. (Previous measurements on two ID channels 0.2 pm long by 0.3 ym wide 
separated by 0.5 ,um revealed that even if the channels differ slightly in width there is 
evidence to suggest that the subbands in the different apertures depopulate at the same 
voltage [2] . )  Using equations (1) and ( 2 )  the gate voltage at which the Nth subband 
depopulates can be calculated, by noting for what values of V,, E,  = EN, where E, is 
the Fermi energy and EN is the energy of the Nth subband. Considering the potential to 
be square well like, which is reasonable so long as w > 50 nm [12],  then equating EF with 
EN gives 

2 n w 2 / n  = N 2 .  (4) 

After solving equation (4) numerically for N = 1 ,  2 and 3 the various values of V g  are 
obtained. These are marked on figure 3 and show that this cannot explain all the structure 
in the pinch-off characteristics. It is reassuring to note that the average plateau separation 
in the gate voltage for the two ID channels in parallel [2] (which was defined on the same 
material) is 0.2 V, while that calculated from equation (3) is 0.18 V. The extra structure 
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in figure 3 implies the existence of mini bands, and Bragg refiecticrns, resulting from the 
periodic potential in the direction of current flow. 

The potential in the x direction is of the form V ( x )  = V(x + a) ,  which results in a 
standing wave whenever 

P Y F N  = 2a p =  1 , 2 , 3 . .  .. ( 5 )  
where AFN is the electron wavelength for the Nth in subband at the Fermi energy 
(which is given by AFN = 2 x / ( k f -  n N * / ~ ~ ) l / ~ ) ,  and a ,  is the superlattice period. The 
Schrodinger equation can be solved using the Fourier transform of the periodic function 
V(x)  in a matrix equation [13] .  The width of the pth band gap is proportional to the f3th 
Fourier component of V,. For a perfect sine potential a gap will only open for 13 = 1. In 
samples 1 and 2 the potential should be similar to a square well potential with a smooth 
transition from the maximum to the minimum over a range of 0.15 ,um. The potential is 
related to the Nth ID subband by 

V(x)  = (h2/2m")(Nn/w(x))2 (6) 
where w(x)  is the variation in the channel width in the y direction as x is varied. Thus 
the higher energy ID subbands will be affected to the greatest extent by the potential. 
The structure in the conductance versus gate voltage curves will not only be seen if a gap 
develops in the conduction band but it will also be seen when the group velocity, u N ( k ) ,  
varies where 

U N ( k )  = ( 1 / h ) ( 6 E ( k ) / 6 k N ) *  

In addition the probability of scattering will alter with V,. The scattering will be at a 
maximum and the group velocity will be at a minimum when equation ( 4 )  is satisfied. 
To find the values of gate voltage at which structure due to Bragg reflection will be seen 
we must modify equation ( 4 )  to get 

2nw2/n - (pw/a ) '  = N 2 .  (7)  
The values of V,  obtained from equation (7) are marked on figure 3 showing a reasonable 
fit to the peaks in the differential of Vg against G. The lower index bands are separated 
from each other by less than 25 mV in the gate voltage. Due to temperature broadening 
these bands are not revealed. Although the peaks do not fit the structure in the con- 
ductance versus gate voltage curves exactly, they do explain why over this range of gate 
voltages there are more than six dips when there should only be two due to the ID 
subbands being depopulated. There is a reasonable correlation between the measured 
structure and that predicted due to Bragg reflections, considering the assumptions 
involved. 

In figure 5 the conductance is plotted against gate voltage for five temperatures from 
32 mK to 480 mK for sample 1. The structure is very much more dramatic with sharp 
dips in conductance at specific values of V,. These measurements were taken two 
terminally as there were no Hall probes on this sample. The inset shows the temperature 
dependence of the dips plotted against In T showing a similar slope. The change in 
conductivity is given by 

d o  = 0.03(e2/h)  In T. (8) 
The resemblance to  2~ localisation will be explained subsequently. Although sample 1 
was fabricated on a similar substrate to sample 2, with the same initial carrier con- 
centration (see table l), the final pinch-off was at a more negative gate voltage of 
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Figure 5 .  A plot of the conductance versus gate 
voltage for sample 1 at five different tempera- 
tures. The current and voltage were applied to 
contacts D and G. The curves are offset by (0.2) 
2e2/h for clarity. The inset shows a plot of peaks 
2 and 3 plotted against In T; +: G = 
(0.20 + 0.38 In 7'); 0: G = (0.23 + 0.03 In 7J. 
Due to a slight hysteresis in the resistance versus 
gate voltage curves, some of the peaks have dif- 
ferent positions of gate voltage. This is just a shift 
in the whole curve to either higher or lower gate 
voltages. 
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Figure 6 .  A plot of the resistance of sample 2 
against gate voltage with the current and voltage 
as in figure 5 .  Each of the six curves were measured 
with a different magnetic field applied per- 
pendicular to the ?DEG. The curves are offset by 
1 MQ for clarity. 

- 1.625 V. This would imply that the ID channels were wider by approximatelyone third. 
The distribution of the positions of the peaks in figure 5 for sample 1 are similar to those 
of curve B in figure 3 for sample 2, with the average peak separation of sample 2 being 
50 mV while that for sample 1 is 45 mV. This is evidence that the structure has the same 
cause. 

The fact that the dips in the conductance follow the behaviour of weak 2D localisation 
can be explained if we assume that the electrons are localised when the Bragg reflection 
condition is satisfied. This is not a result of disorder, but occurs because the transmission 
coefficient, Ti, for an electron encountering a superlattice potential goes to zero at 
the Bragg condition, while at other energies TI remains close to 1 and the electron 
wavefunction is an extended Bloch wave. At  the Bragg reflection condition the electron 
is partially reflected by T, every time it encounters a double barrier, so its amplitude is 
reduced by when it has traversed Msuperlattice periods. This provides an exponential 
envelope function to any initially free electron wave packet, localising the wavefunction 
over a range such that Tf" < 0.5 or 
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M <  -0.7/ln Ti (9) 
this leads to a localisation length, LLoc given by 

LLoc = 2Ma = -0.7/ln Ti pm. 

If Ti = 0.8 then LLoc = 3 pm. As the temperature is increased the phase breaking length 
L, will be reduced until, when L,  < LLoc, the electrons will only experience weak 
localisation and diffusion will occur more readily. If L, is long enough then these dips 
in the conductance would go to zero leading to complete gaps in the density of states. 
For a different gate voltage away from the Bragg condition, Ti will be close to 1 so the 
localisation length will be very large and no dips in the conductance will be observed. 
At the Bragg condition the conductivity will thus be given by 

d o  = 2.3(e2/h) ln(LLoc/Lq). (11) 

The localisation appears to be 2~ in nature because the electrons are moving round a 
grid in both the x and y direction so long as LLOC is larger than one superlattice period. 
This mechanism for removing the structure with temperature is different from the 
thermal activation of the electrons across the mini bands which would lead to an 
exponential variation of conductance with temperature. Using equation (10) the dif- 
ference in magnitude of the structure in the conductance versus gate voltage between 
the two samples can be explained. A small change of Ti of 10% between the two samples 
at the Bragg condition will produce a change of LLoc of 100%. This could be caused by 
a small difference in the exposure conditions for sample 2 such that the gate pattern has 
smoother features than sample 1 resulting in better focusing and therefore a larger value 
of T,. As the phase breaking length should be the same in both samples the resulting 
features due to localisation at the Bragg condition are very much smaller in sample 2. 

Figure 6 contains several plots of the resistance in sample 1 measured in a two 
terminal manner off contacts D and G as the gate voltage is varied. Each curve was taken 
at a different magnetic field perpendicular to the plane of the ~ D E G .  It is immediately 
obvious that the amplitude of the peaks is reduced as the magnetic field is increased, 
until at 0.59 T the majority of the structure is quenched. The structures at more negative 
gate voltages require larger magnetic fields to remove them. As the carrier concentration 
could not be measured as Vg was varied in sample 1, it had to be estimated from the 
behaviour of sample 2. In that sample the carrier concentration had dropped to one third 
of its original value by the time the device was close to pinch-off. This value was used to 
estimate the size of the cyclotron orbit at these magnetic fields indicating that the 
structure disappears when the cyclotron orbit is comparable to the superlattice period. 

In conclusion we have fabricated a device containing a strong 2~ superlattice potential 
that creates a grid-like conducting structure of period 0.5 pm. The conduction through 
this grid behaves like many loosely coupled ID wires which contain a periodic potential 
along their length. One such device with Hall probes allows the carrier concentration to 
be measured as the gate voltage is varied. At low magnetic fields the Hall voltage is 
quenched over a distance of 25 pm, while the longitudinal resistance shows h/e 
Aharonov-Bohm oscillations. This is consistent with the theoretical predictions that the 
Landau levels are split into p sub-bands when p flux quanta are threaded through each 
unit cell [ 141. A large broad peak in the resistance is observed at the same magnetic field 
as that for which the quench in the Hall voltage ends and it occurs when the cyclotron 
orbit is comparable to the depleted dot size. The two samples exhibit structure in the 
conductance as the gate voltage is varied, which is consistent with ID subbands between 
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the dots showing Bragg reflections whenever the wavelength in the x direction is equal 
to the superlattice period. In one of the samples the dips in the conductance are 
large enough for their temperature dependence to be measured and compared to 2~ 

localisation. The localisation is due to the reduction in the transmission coefficient when 
the Bragg condition is satisfied and reduces as the temperature is increased, because the 
phase breaking length for electrons also decreases with increasing temperature. A 
magnetic field quenches the peaks in the resistance when the cyclotron orbit becomes 
comparable to the superlattice period. 

This work was supported by the SERC and, in part, by the European Research Office 
of the US Army. I would like to thank M J Kelly and T J Thornton for useful discussions. 
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